If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16=32
We move all terms to the left:
4x^2-16-(32)=0
We add all the numbers together, and all the variables
4x^2-48=0
a = 4; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·4·(-48)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*4}=\frac{0-16\sqrt{3}}{8} =-\frac{16\sqrt{3}}{8} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*4}=\frac{0+16\sqrt{3}}{8} =\frac{16\sqrt{3}}{8} =2\sqrt{3} $
| d-16=81d= | | Y=2.50x=1200 | | Y=2.50x=500 | | 120x=1000 | | b/4=12b= | | 3x-7=6x+4-2x(4) | | Y=2.50x=100 | | Y=2.50x=10 | | X×X×X+162x+513=0 | | r-(5/4)+(1/2)r=(13/4) | | x2+11×−12=0 | | 2(5x-6)-4x=-(39+3x) | | 25+5+9=n | | 365/w=365w= | | 6.5=4/3x+0 | | 3(2-x)-1=5-7x | | .1/3x-4=3/4x+1 | | 12/c=4c= | | (1/3)(2x-4)=-6 | | 4f(-2)=2(-2)+2 | | (x+12)/4=-9 | | 5(x+2)-6(x-2)=5 | | .3x+x=100 | | 2x-20=3x-12 | | (12+3)-7=n | | 1.5-x^2/4.5=0 | | 2x-7(x+2)=6(x-2) | | 20+4(3x-5)+2x=48 | | 5(5–x)=–5x+20 | | 3(x+5)-x=49 | | 3.4=6b | | 5x^2-50=75 |